
Borrowing Your Enemy’s Arrows: The Case of Code Reuse in
Android via Direct Inter-app Code Invocation

Jun Gao
∗

University of Luxembourg

Luxembourg

jun.gao@uni.lu

Li Li
∗

Monash University

Australia

li.li@monash.edu

Pingfan Kong

University of Luxembourg

Luxembourg

pingfan.kong@uni.lu

Tegawendé F. Bissyandé

University of Luxembourg

Luxembourg

tegawende.bissyande@uni.lu

Jacques Klein

University of Luxembourg

Luxembourg

jacques.klein@uni.lu

ABSTRACT
The Android ecosystem offers different facilities to enable commu-

nication among app components and across apps to ensure that rich

services can be composed through functionality reuse. At the heart

of this system is the Inter-component communication (ICC) scheme,

which has been largely studied in the literature. Less known in the

community is another powerful mechanism that allows for direct
inter-app code invocation which opens up for different reuse scenar-

ios, both legitimate or malicious. This paper exposes the general

workflow for this mechanism, which beyond ICCs, enables app

developers to access and invoke functionalities (either entire Java

classes, methods or object fields) implemented in other apps using

official Android APIs. We experimentally showcase how this reuse

mechanism can be leveraged to “plagiarize" supposedly-protected
functionalities. Typically, we were able to leverage this mechanism

to bypass security guards that a popular video broadcaster has

placed for preventing access to its video database from outside its

provided app. We further contribute with a static analysis toolkit,

named DICIDer, for detecting direct inter-app code invocations in

apps. An empirical analysis of the usage prevalence of this reuse

mechanism is then conducted. Finally, we discuss the usage contexts

as well as the implications of this studied reuse mechanism.

CCS CONCEPTS
• Security and privacy→ Software security engineering.

KEYWORDS
Android, Java Reflection, DICI

ACM Reference Format:
Jun Gao, Li Li, Pingfan Kong, Tegawendé F. Bissyandé, and Jacques Klein.

2020. Borrowing Your Enemy’s Arrows: The Case of Code Reuse in Android

∗
Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7043-1/20/11. . . $15.00

https://doi.org/10.1145/3368089.3409745

via Direct Inter-app Code Invocation. In Proceedings of the 28th ACM Joint
European Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering (ESEC/FSE ’20), November 8–13, 2020, Virtual
Event, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/

3368089.3409745

1 INTRODUCTION
Code reuse, a.k.a. software reuse, is a form of knowledge reuse in

software development that is fundamental to accelerate innova-

tion. Its practice in software engineering is as old as programming

itself [1], and has been exacerbated recently within mobile pro-

gramming frameworks to respond to the needs for keeping up with

market requirements of up-to-date functionalities. The facilities

offered by Android in this respect have even enabled a large num-

ber of software authors to contribute to the application ecosystem,

often with little professional training [2].

Reusability is at the core of the Android ecosystem, which builds

on the popular Linux kernel and the Java and XML languages

to benefit of the extent of device drivers and software libraries

to bootstrap functionality development. Unfortunately the staged

compilation process as well as the packaging model makes An-

droid apps straightforward to reverse engineer and copy. This has

led to a situation where cloning (a.k.a., repackaging) is common-

place [3–7]. At an inner-level, Android intents and intent-filters

facilitate decoupling and assembling of app components, providing

opportunities for reuse of existing components to interact with

new components. For example, malware writers are extensively

exploring these reuse facilities to piggyback malicious code on le-

gitimate app by leveraging events (e.g., SMS incoming broadcast)

to trigger malware execution. More generally, component hijacking
in Android has been largely investigated in the literature [8, 9]: by

evading permission checks, an Android app may access resources

that it is not allowed to. In this respect, Inter-Component Com-

munication (ICC) analyses [10–16] have been proposed to track

data leaks as well as to detect permission redelegations attacks [17].

Further investigations were performed in the literature towards

uncovering potential app collusion [18, 19], i.e., cases where a set

of apps are able to carry out a threat in a collaborative fashion.

App collusion is indeed generally associated to information leakage

and inter-app communication where developers leverage Android

implicit and explicit messaging services to orchestrate legitimate

rich scenarios or devise sophisticated attacks.

https://doi.org/10.1145/3368089.3409745
https://doi.org/10.1145/3368089.3409745
https://doi.org/10.1145/3368089.3409745

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Jun Gao, Li Li, Pingfan Kong, Tegawendé F. Bissyandé, and Jacques Klein

In this paper, we dissect a less-advertised reuse mechanism that

is available in the Android framework, through which developers

can invoke a given functionality code implemented in another app.

We refer to it asDirect Inter-app Code Invocation (DICI). To the

best of our knowledge, this mechanism was never mentioned in the

Android research literature. DICI is often used in legitimate contexts

such as across GoogleMobile Services
1
to enable functionality reuse

among apps. Nevertheless, as we will demonstrate in Section 2,

DICI can be used maliciously to plagiarize other-wise protected

functionalities and by-pass standalone app analysis.

The DICI mechanism achieves inter-app interactions without

leveraging the Android standard inter-component communication

primitives. This mechanism builds on Java reflection and a set of

dedicated API methods that are provided within the Android frame-

work. DICI differs from existing reuse mechanisms in various ways:

(1) In contrast to cloning of entire apps or copy/paste of code frag-

ments, DICI does not require including the targeted functionality

code in the attacking app. This property is leveraged by attackers

to bypass security assessment where the attacking app is analysed.

It also results in an app of smaller size, while avoiding potential

decompilation issues (e.g., some code cannot be decompiled prop-

erly) with the attacked app. Finally, the attacking app is easy to

maintain when the attacked app is updated. Last but not lest, DICI

also requires little understanding of the implementation details of

the leveraged apps since developers only need to know and invoke

the entry method for a given functionality: relevant methods and

classes will be loaded and invoked automatically even for native

methods. (2) Unlike ICC, DICI can allow the invocation of function-

ality that is not implemented within an Android component, such

as a library function in another app. In other words, DICI widens

the reuse surface: with DICI any code can be invoked, not only

code that is in specific components such as with ICC. (3) Finally,

DICI can be leveraged to implement stealthy code reuse. Indeed,

while with ICC the developer of the reuse target may be aware that

her code could be reused, it is not necessarily the case for DICI.

In Android, a component, such as an Activity or a Service, has

its “exported” attribute set as “True” when the developer wishes

to allow ICC from another app. Such a developer may then take

appropriate measures to ensure component security. In the case

of DICI, a developer of an app is not aware that her code will be

invoked by a third party.

The main contributions of our work are:

• We expose a little-advertised reuse mechanism within the

Android ecosystem. In particular we demonstrate how it can

be leveraged to perform stealthy functionality plagiarism

that may not be covered by standard licensing scheme.

• We develop a static analysis tool, DICIDer, for the detection

of DICIs in Android apps. We perform an empirical analysis

on the prevalence of DICIs among a large dataset of apps

retrieved from the AndroZoo repository [20]. We further

provide extensive discussions on how and why developers

use DICIs through an analysis of sample cases.

• We propose an example of countermeasure that could be

used by developers to protect their apps against DICI.

1
GMS are the apps by Google that often come pre-installed on Android devices. They

are not part of the Android Open Source project

2 DISSECTION OF THE DICI MECHANISM
We provide a problem statement for the direct inter-app code in-

vocation mechanism (Section 2.1) and showcase some motivating

examples of reuse based on this mechanism (Section 2.2).

2.1 Direct Inter-App Code Invocation in
Android

Given the lack of related information on the mechanism of Direct

Inter-app Code Invocation within the Android research literature,

we contribute to the body of knowledge by presented an overview

of the mechanism. DICI is a mechanism for inter-app communica-

tion (i.e., the possibility for one app to leverage resources, either

functionality or information, from another app during its execu-

tion). Figure 1 summarizes how inter-app communication works in

Android by illustrating DICI in comparison with the standard ICC

(i.e., inter-component communication).

Comp1

Android Framework

Comp2

App1
App2 Cls2

Android ICC (Intent)

DICI

Figure 1: The two types of inter-app communication: An-
droid ICC and DICI.

ICC is the standard mechanism used by developers (as recom-

mended in the Android documentation) to achieve inter-app com-

munication. Its capabilities and challenges have been (and still

remain) intensively studied in the research literature. ICC is an

Android-specific mechanism that was implemented to enable in-

teraction among Android components, i.e., the basic units that are

composed to form apps. Indeed, the four types of components,

namely Activity, Service, Broadcast Receiver, and Content Provider,

which are responsible for different tasks, cannot directly invoke

each other’s functionalities. Developers must then rely on specific

ICC methods, such as startActivity(), to achieve this interaction. As

illustrated in Figure 1, an Android ICC is triggered by the Android

framework. Thus, there is no direct connection between the source

and target components at the code implementation level. When the

target component of an ICC belong to a different app than the

source component, an inter-app communication is implemented.

Beyond ICC, we have come across cases in the practice of An-

droid app development where inter-app communication can be

achieved through direct code invocation. We refer to such a mecha-

nism as DICI. As illustrated in Figure 1, DICI can not only (1) bypass

the Android ICC mechanism to realize inter-app communication,

but also (2) directly invoke non-component code (e.g., standard Java

class Cls2 in Figure 1). The latter capability is not available through

the recommended ICC mechanism.

Problem statement. To date, ICC-based inter-app communication

has been widely investigated by the research community [10, 13,

19, 21–23]. The literature provides extensive results on tracking

Borrowing Your Enemy’s Arrows ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

information flow through ICC, statically flagging how such inter-

app communications are leveraged by attackers to achievemalicious

behaviours (e.g., privacy leaks). Studies of how malware is written

in bulk through reusing legitimate apps (i.e., piggybacking [4]) have

mainly focused on investigating how ICC is relied upon to trigger

malicious payload.

Our hypothesis is that DICI, yielding a larger reuse surface, poses

challenges that are at least as acute as for ICC. Indeed, DICI may

be used by attackers to achieve malicious code invocations while

bypassing the security analysis tools which have been focused

on ICC-based scenarios. Furthermore, our work raises awareness

among the developer community on the possibility of having their

functionalities reused without their knowledge by either plagia-

rists or malicious attackers. Finally, for the research community,

exposure to this reuse mechanism in the Android realm re-opens a

variety of research directions.

2.2 DICI in Action
We highlight the possibilities that offer the DICI mechanism with

two motivational use cases. Both cases involve the development of

apps that reuse code available in other apps.

(1) StealthApp is designed to orchestrate an app collusion sce-

nario for private data leak. In this example, we focus on the

possibility of leveraging DICI to hide malicious code in or-

der to increase the chances of escaping detections that are

attempted via static analyses.

(2) TikTokDownloader showcases the critical possibilities that

DICI provides in terms of plagiarism. In this example, func-

tionalities (including backend infrastructure) of one of the

most popular apps in the world, namely TikTok [24], are

reused to build at no-cost a video-sharing app. In particular,

we show that (1) we can reuse several TikTok functionali-

ties, (2) we can provide additional functionalities that are

initially forbidden by TikTok, (3) we can even leverage the

full infrastructure of TikTok.

2.2.1 Malicious Code Hiding. The International Mobile Equipment

Identity (IMEI) is a number used as a standard to identify mobile

phones. It is considered to be a key private information and should

be kept private [25–27]. Consequently, APIs to obtain the IMEI are

classically considered in the list of “sources” for data-flow analy-

ses [28, 29], thus facilitating detection of leaks, even when ICC are

used. We propose to leverage DICI to orchestrate the leakage of

the IMEI via SMS: the goal is to build exclusively on code that is

implemented from other apps (1) to retrieve then (2) to leak the

IMEI. We consider this use case to be reasonable since on a given

device it is highly likely to identify other apps that implement a

code fragment for sending SMS and another app that has code

where the IMEI is retrieved. By doing so, we ensure that there is no

explicit code in our developed app (i.e., StealthApp) where neither
IMEI collection can be matched (e.g., via tracking calls to API) nor

leaking via SMS can be identified. Therefore our implementation

of such a collusion, with DICI, challenges the detection of security

leaks in StealthApp.
Listing 1 provides an excerpt of the code used in StealthApp

to invoke a method (getDeviceID at line 13) from another app

(org.communicorpbulgaria.bgradio at line 4). Note that in this

code the actual API provided by the framework (i.e., android.-
telephony.TelephonyManager) is hidden. DICI is implemented in

this case through reflection after obtaining the context of the app

that implements the code to reuse (lines 3-7). Based on this context,

the class loader of the app can be obtained (line 8) and used to load

relevant classes in the app (line 9-11). The method object is acquired

with the class object containing it (line 12-15). Since getDeviceID,
which is implemented by the target app, is a static method, it is

invoked directly to finally get the IMEI number (lines 16).

1 private String getImei () {
2 String imei = null;
3 Context invokee = this.createPackageContext(
4 "org.communicorpbulgaria.bgradio",
5 Context.CONTEXT_INCLUDE_CODE |
6 Context.CONTEXT_IGNORE_SECURITY
7);
8 ClassLoader loader = invokee.getClassLoader ();
9 Class util = loader.loadClass(
10 "org.ccb.radioapp.components.Utils"
11);
12 Method getDeviceId = util.getDeclaredMethod(
13 "getDeviceID", Context.class);
14 imei = (String) getDeviceId.invoke(null , this);
15 return imei;
16 }

Listing 1: Retrieval of IMEI through reflection for third-
party code reuse

Similarly, a method from another third-party app is invoked

to send the obtained IMEI via SMS as shown
2
in Listing 2. This

method is named sendSms (line 12), but it cannot be confused with

framework APIs for sending APIs. Instead, this method is contained

in class CommonUtils (line 9) from app com.globalcanofworms.-
android.simpleweatheralert (line 3).
1 private void sendMsg(String num , String msg) {
2 Context invokee = this.createPackageContext(
3 "com.globalcanofworms.android.simpleweatheralert",
4 Context.CONTEXT_INCLUDE_CODE |
5 Context.CONTEXT_IGNORE_SECURITY
6);
7 ClassLoader loader = invokee.getClassLoader ();
8 Class util = loader.loadClass(
9

"com.globalcanofworms.android.coreweatheralert.CommonUtils"
10);
11 Method sendSms = util.getDeclaredMethod(
12 "sendSms", Context.class , String.class , String.class);
13 sendSms.invoke(null , this , num , msg);
14 }

Listing 2: Data transfer via SMS through reflection for
third-party code reuse

StealthApp performs a malicious behavior, through app col-

lusion, without explicitly implementing any malicious code. As

long as all the apps targeted for reuse are available on the users

device, its IMEI can be leaked and yet, both dynamic and static

scanning techniques will systematically fail to spot this leak if apps

are analyzed individually. In any case, even when the apps are avail-

able, it is important to note that the use of reflection makes the

use static analysis techniques challenging. While some techniques

(e.g., code instrumentation of reflective calls into direct calls with

DroidRA [30]) have been proposed in the literature to overcome

limitations raised by reflection, these techniques generally target

in-app code (e.g., dynamically loaded classes from an extra dex file)

Such method would not work for DICI since the method that should

be called is not present in the analyzed app.

2
The aforementioned code snippets are simplified with absence of exception handling.

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Jun Gao, Li Li, Pingfan Kong, Tegawendé F. Bissyandé, and Jacques Klein

B Limitations of the StealthApp use case: We have devel-

oped a naive app collusion system with StealthApp as a proof-of-

concept of hiding malicious code with DICI. The goal, with this

use case, is not to implement a sophisticated attack. Besides its

simplicity, this use case presents several limitations:

• Availability of target apps. The implementation of the malicious

behavior depends on the installation status of other apps to

orchestrate the app collusion. Their probability of availability

on the device could lower the possibility of the execution of

the malicious code. Nevertheless, we can expect attackers to

leverage the diversity of apps that are shipped with new de-

vices. For example, hackers could list all the functionalities of-

fered by the apps that are already installed on all devices from

a specific manufacture, or consider only focusing on popular

apps to increase the probability of being able to realise the sce-

nario on millions of devices. Finally, note that the official API

PackageManager.queryIntentActivitieswith Intent category
set to CATEGORY_LAUNCHER can be used to retrieve at runtime the

relevant information on installed apps on the current device.

• Permissions. Another limitation is that permissions of other apps

will not be granted to StealthAppwhen StealthApp is invoking
their code. Therefore, when a method is protected by a permis-

sion, this permission must be granted as well to the app before

invoking the third-party code. For our IMEI leakage example, the

READ_PHONE_STATE and SEND_SMS permissions are required

in StealthApp. Nevertheless, because of the recurrence of per-
mission over-privilege (i.e., apps ask for more permissions than

they need) in the Android ecosystem [31, 32], attacks such as the

one perpetrated by StealthApp can go unnoticed.

• Process access. Finally, it is noteworthy that in the case of ICC,

when an app A is “calling” a component of an app B, that com-

ponent is launched in the process of B, i.e., the target code that

is run in B can access the internal data of B. With DICI, when an

app A invokes code from B, this code is launched in the process

of A, meaning that this code cannot actually access internal data

of B. Nevertheless, despite this limitation for accessing more re-

sources, accessing functionality implementation poses different

threats as we will show in the second use case.

2.2.2 Functionality Plagiarism. TikTok is a highly popular video-

sharing app. It has more than 500 million installs on Google Play
alone. In line with the necessity to control copyrights of video

submitters as well as due to commercial needs to strongly bind users,

all the shared videos can only be viewed and downloaded through

the single TikTok app. Among other constraints, TikTok does not

allow allow batch downloading (i.e., the possibility to download all

of the videos of a single user at once). In order to block download

requests originating from third-party interfaces, each request need

to be appended with a one-time “signature” for the Tiktok server to

verify the legitimacy of the request. This “signature” is calculated

by an algorithm implemented within the user app with certain

information such as user ID, time stamps, etc. These mechanisms

are rather effective against the typical cloning (i.e., repackaging

attack) or the reverse engineering of the TikTok app in order to

exploit the backend infrastructure and resources of Tiktok, notably

the database of videos.

We will show now that, with DICI, it is actually possible to

reuse the code of TikTok to achieve the objective of exploiting

the TikTok infrastructure. Typically, we were able to implement

our own batch downloader, that we call TikTokDownloader, to
download TikTok videos by accessing and plagiarizing the signing

algorithm implementation in the TikTok app. As shown in Figure 2,

the developed app will require just to input a user ID to specify the

videos of which user must be downloaded.

(a) Search User ID (b) Downloaded Videos

Figure 2: Batch Downloader Snapshots

TikTok implements video search and download via REST end-

points (i.e., an URL where requests can be specified for actions or

resources). However, as endpoints are accessed via requests that

are transmitted in plain text with logical structures, they can be

obtained, manipulated and used easily by third parties. Thus, to

reserve the exclusive use of these endpoints to TikTok itself, a one-
time “signature” is required to be appended to each endpoint when

requesting the server. After investigating the DEX
3
code of TikTok,

we identified a method whose obfuscated name is “a” within class

com.ss.android.ugc.aweme.app.a.c, which computes the sig-

nature for the app to access the TikTop server resources. Listing 3

presents the implementation code of method “a” which is the target

of our plagiarism scenario.

1 private String a(String str) {
2 int i;
3 String userInfo;
4 String str3;
5

6 int serverTime = NetworkUtils.getServerTime ();
7 if (serverTime < 0) {
8 i = 0;
9 } else {
10 i = serverTime;
11 }
12 String str4 = str + "&ts=" + i;
13

14 HashMap hashMap = new HashMap ();
15 d.a(hashMap , true);
16 String [] strArr = new String [(hashMap.size() * 2)];
17 int i2 = 0;
18 for (String str5 : hashMap.keySet ()) {
19 String str6 = (String) hashMap.get(str5);
20 if (str5 == null) {
21 str5 = "";
22 }

3JADX is used here for the decompiling, it can be found at https://github.com/skylot/

jadx

https://github.com/skylot/jadx
https://github.com/skylot/jadx

Borrowing Your Enemy’s Arrows ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

23 if (str6 == null) {
24 str6 = "";
25 }
26 int i3 = i2 + 1;
27 strArr[i2] = str5;
28 strArr[i3] = str6;
29 i2 = i3 + 1;
30 }
31

32 userInfo = UserInfo.getUserInfo(i,
URLDecoder.decode(str4), strArr , "");

33

34 int length = userInfo.length ();
35 String substring = userInfo.substring(0, length >> 1);
36 str3 = (str4 + "&as=" + substring + "&cp=" +
37 userInfo.substring(length >> 1, length)) + "&mas=" +
38 com.ss.android.common.applog.i.byteArrayToHexStr(
39 com.ss.sys.ces.a.e(substring.getBytes ()));
40 return str3;
41 }

Listing 3: Simplified Signing Method from TikTok

TikTokDownloader implements the DICI mechanism to invoke

the method illustrated in Listing 3 in order to sign the endpoints

and then request the server with the signed endpoints. It is worth

to mention that all of the relevant classes, such as NetworkUtils
in line 6, will be automatically loaded as well. This constitutes

a powerful capability of the DICI mechanism since even native

libraries (generally preserved from reverse-engineering due to their

machine binary format) can also be reached: for example, in the

sample code, getUserInfo (line 32), byteArrayToHexStr (line 38) and
e (line 39) are all sensitive code that are embedded in native code.

The usage scenario of our TikTokDownloader app is that it is in-
stalled on a device where the user already has an account on TikTok.

The DICI mechanism in this case has led to the implementation

of copyright infringement attacks (since video uploaders did not

provide any rights to TikTokDownloader to access their content).

Another critical point is that DICI allowed to easily plagiarized

the TikTok code in a stealthy: TikTokDownloader did not copy the

code, nor did it rewrite in some way; instead it just invokes it at

runtime, a case that is not comprehensively studied in the literature

of code plagiarism.

Apps availability and responsible disclosure: We provide

on GitHub the source code of both use-case apps as artefacts for

further research: https://github.com/gaojun0816/FSE-anonymous-
artefact. Both apps have been tested on a Nexus 5 device running
Android version 8.1.0. We have also responsibly informed TikTok

owner company about the risk posed by DICI with respect to the

possibility to bypass their security infrastructure to access users

copyrighted videos.

3 TOOL DESIGN
Aiming at automatically inferring the usage of DICIs in Android

apps, we design and implement a prototype tool called DICIDer,

which takes as input an Android APK file and outputs a list of

DICI paths that trace how direct inter-app code invocations are

planned in the analyzed app. An overview of the working process

of DICIDer is presented in Figure 3. Overall, DICIDer follows four

steps to pinpoint DICI instances. We now briefly introduce these

steps.

Call Graph

Call Contexts

DICI-relevant
API Calls

(2) API Scan

(1) Call-Graph
Construction

(3) Context-aware
Flow-sensitive
Data-flow Analysis

(4) DICI
Detection

End
Analysis

DICI
PathsAndroid APK

Not all levels of APIs
found, or Level-1
API flags invalid

Figure 3: Static Analysis for Uncovering DICIs.

3.1 Step (1): Call-Graph Construction
DICIs are implemented following a sequence of API calls (e.g., to

obtain the third party app context, load the relevant class, invoke

the target code, etc.). We thus propose to construct the call graph

of the input Android app to facilitate further analyses. To that end,

DICIDer relies on the Soot Framework [33] as well as the Flow-

Droid [28] precise taint analysis tool. To realize this analysis, the

apk is first disassembled and the app Dalvik bytecode is transformed

into Jimple, the intermediate representation that is leveraged in

Soot. Then, this Jimple code is analyzed by Soot to yield a call graph

of the app.

We recall that Android apps do not come with a single entry-

point (e.g.,main in classical Java applications) to start app execution.
Instead, the app can be started from different entry points, from any

app components, which complexifies the construction of a single

call graph. To address this problem, FlowDroid constructs a dummy

main method for analysis. This dummy main method takes into

account all the possible entry-points of the app (i.e., components)

and their lifecycle methods (e.g., onStart(), onStop()) as well as all the
leveraged callback methods (onClick()). The reason why lifecycle

methods and callback methods are needed to be explicitly included

is that these methods are not explicitly connected at the code level.

The prepared dummy main method then enables the Soot to con-

struct the call graph of the app and subsequently to traverse all the

app code in their possible execution contexts. Note that Soot imple-

ments several in-house call graphs construction algorithms such as

CHA and SPARK. While the CHA algorithm is faster than SPARK,

it is rather more imprecise [33]. Given that in our work, precision

of call graph is a key property to ensure that DICIDer yields good

performance, we choose to leverage the SPARK algorithm to build

the call graph (with the correct API calling sequences modeled).

3.2 Step (2): API Scan
Once the call graph is constructed, the second step that is unfolded

is to identify the relevant APIs that contribute to the realization of

DICIs. Then, one must assess the parameters of these API calls to

further confirm potential code reuse scenarios.

API presence detection: DICIDer performs a quick scan over the

call graph to check if DICI-relevant APIs of the Android framework

are leveraged by the app. The presence of such APIs is a primary

condition for the presence of DICIs in the analyzed app. If such APIs

do not exist, there is no need to proceed further, and the analysis

of the app is safely halted.

Which are the DICI-relevant APIs? In Section 2.2, our use-case

description highlighted a sample sequence call of specific Android

APIs. Following up on this example, we have carefully investigated

https://github.com/gaojun0816/FSE-anonymous-artefact
https://github.com/gaojun0816/FSE-anonymous-artefact

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Jun Gao, Li Li, Pingfan Kong, Tegawendé F. Bissyandé, and Jacques Klein

APIs that are used in the same principles, and tag them as DICI-

relevant.Table 1 enumerates all DICI-relevant APIs considered by

DICIDer, along with their implementation class, signature, return

type and a textual description. Since DICIs are performed through

a sequence of calls of several DICI-relevant APIs, each API may

be necessary at different position/level within the sequence. We

indicate for each DICI-relevant API the level of that API, which
represents the position of its call within an instance of DICI call

sequence. Generally, a successful DICI needs to involve at least one

API in each of the five levels’ APIs.

• Level 1: Obtain the context of another app.
• Level 2:Obtain the corresponding class loader using the obtained
context of the other app.
• Level 3: Load the class (to be directly invoked) of the other app

through the obtained class loader.

• Level 4: Locate the constructor, method, or field (to be directly

reused) from the loaded class.

• Level 5: Finally, access the previously located constructor, method,

or field reflectively. If the method or field is not declared as static,
an additional step is needed to instantiate an object of the class.

DICIDer uses the list of DICI-relevant APIs to check whether

the analyzed apk contains such APIs. In particular, if the analyzed

apk does not contain at least one DICI-relevant API of each of the

five levels enumerated previously, the API call sequence is ignored

at this stage and DICIDer terminates with no DICI paths detected.

… …

CONTEXT_INCLUDE_CODE

CONTEXT_RESTRICTED

CONTEXT_DEVICE_PROTECTED_STORAGE

F1

CONTEXT_IGNORE_SECURITY

F2F4 F0F8

NULL

Figure 4: Example options that can be appliedwhen creating
contexts via package names.

API parameter checking: There is another constraint that may

keep DICI from happening in practice. This constraint is brought

by the second parameter of the createPackageContext() API. This
second parameter, known as flags, allows developers to specify

(via bitwise operators) how should the package context be created.

Some of the options that developers can specify are highlighted in

Figure 4 and briefly explained below.

• F0 (or 0000). The default option. None of the other options
are enabled.

• F1 (or 0001). If enabled, it allows the context to access the
code implemented in the loaded package. Otherwise,
only resource files are allowed to be accessed.

• F2 (or 0010). This option will ask the context to ignore any se-

curity restrictions. When enabled along with

CONTEXT_INCLUDE_CODE, it will allow code to be loaded

into a process even when it is not safe to do so. As recom-

mended by Google, developers should use this option with

extreme care
4
.

• F4 (or 0100): This option will allow the context to disable

specific features of its accessed resources.

• F8 (or 1000). This option allows the context to access APIs

even at device-protected storage.

In order to invoke the code of other apps, when creating the

context via createPackageContext(), the F1 option has to be enabled.

Therefore, in this step, we further take efforts to trace the value

of the flags parameter (through backward constant propagation)

of located createPackageContext() usages. If the F1 option is not

enabled, the corresponding API call will not be considered, so as to

avoid false-positive results.

3.3 Step (3): Context-Aware Flow-Sensitive
Data-Flow Analysis

While a call-graph is relevant to spot call sequences of DICI-relevant

APIs, this sequence may actually not be about implementing a DICI.

Indeed, APIs may be invoked under different contexts, leading to

a situation where there is no actual inter-app interaction. Thus,

we need to ensure that the code block that is eventually invoked

is indeed reused from another app. Let us consider the example

provided in Listing 4. This Listing is similar to the beginning of

Listing 1 for the case of malicious code hiding: there is a difference in

that the loader is instantiated by calling this.getClassLoader()
rather than invokee.getClassLoader(). As a result, although the

APIs of the first two levels are invoked following the ideal sequence

(i.e., Level-1 method is called before the Level-2 method), they

cannot jointly form a DICI as the loader is not obtained from the

context invokee but the current context (i.e., this).
1 Context invokee = this.createPackageContext(
2 "org.communicorpbulgaria.bgradio",
3 Context.CONTEXT_INCLUDE_CODE |
4 Context.CONTEXT_IGNORE_SECURITY);
5 ClassLoader loader = this.getClassLoader ();
6 // ClassLoader loader = invokee.getClassLoader ();

Listing 4: An example code showing the necessity of
taking context into consideration.

We address the challenging of keeping track of the data-flow be-

tween API calls by performing a context-aware data-flow analysis to
ensure that the APIs are all called under the same context. Neverthe-

less, instead of performing a generic context-aware data-flow anal-

ysis, which tracks all the flow of all the variables and hence could

be compute-intensive, DICIDer implements a dedicated context-

aware data-flow analysis for which only the contexts related to the

DICI-relevant APIs are tracked.

3.4 Step (4): DICI Usage Identification
Finally, in the last step, DICIDer leverages the results of the pre-

vious steps to pinpoint DICI paths. We recall that the output of

step 3 is a DICI path which is a sequence of API calls with a least

one API for each defined level and called under the same context.

However, at this stage, it is still not established which app, class

and method are invoked via DICI, i.e., what is the target code for

4
https://developer.android.com/reference/android/content/Context

https://developer.android.com/reference/android/content/Context

Borrowing Your Enemy’s Arrows ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Table 1: DICI-relevant APIs

Level Class Signature Return Description

1 android.content.Context createPackageContext(java.lang.String,int) android.content.Context used to create a new context object of a

specified application. The arguments are

application name and creation flags. With

flag CONTEXT_INCLUDE_CODE and CON-
TEXT_IGNORE_SECURITY, the code of another

application can be loaded.

2 android.content.Context getClassLoader() java.lang.ClassLoader get the class loader.

3 java.lang.ClassLoader loadClass(java.lang.String) java.lang.Class get a specified class object by passing the name of

the class.

4 java.lang.Class

getConstructor(java.lang.Class[])

java.lang.reflect.Constructor

get the constructor of a class with the argument

specifying the signature.getDeclaredConstructor(java.lang.Class[])

4 java.lang.Class

getDeclaredMethod(java.lang.String,java.lang.Class[])

java.lang.reflect.Method

get the method of a class with the arguments

specifying the signature.getMethod(java.lang.String,java.lang.Class[])

4 java.lang.Class

getDeclaredField(java.lang.String)

java.lang.reflect.Field get the field of a class by passing the name.

getField(java.lang.String)

5 java.lang.Class newInstance() java.lang.Object instantiate a class with its zero-argument construc-

tor.

5 java.lang.reflect.Constructor newInstance(java.lang.Object[]) java.lang.Object instantiate a class with the specified constructor.

5 java.lang.reflect.Method invoke(java.lang.Object,java.lang.Object[]) java.lang.Object invoke the method. The first argument specifies the

instance of the class and passing null indicates a

class method.

5 java.lang.reflect.Field

set(java.lang.Object, java.lang.Object)

void

set the field with a certain value. The first argument

indicates the object to which the field belongs and

null means the field is static. For

set*(java.lang.Object, *), the asterisk can be

replaced with boolean, byte, char, double, float, int,

long and short. For example, setInt(int).

set*(java.lang.Object, *)

get(java.lang.Object) java.lang.Object get the value of a field. The asterisk stands for the

same primary types mentioned in

set*(java.lang.Object, *).
get*(java.lang.Object) *

5

java.lang.reflect.Method

setAccessible(boolean)

void

set the accessibility of the method, field or constructor.java.lang.reflect.Field

java.lang.reflect.Constructor

reuse. We introduce a lightweight constant string propagation mod-
ule in DICIDer, which goes one step deeper to infer what are the

methods/fields that are accessed via DICI. To that end, given a

fifth-level API, such as java.lang.reflect.Method.invoke(), we per-

form a backward string analysis to infer which is the reflectively-

accessed artifact. Regarding the example shown in Listing 1, for the

invoke method illustrated in Line 16, our backward string analysis

aims at inferring that the method, which is called via reflection, is

getDeviceID() of the class org.ccb.radioapp.components.Utils in app

org.communicorpbulgaria.bgradio.

4 EVALUATION
We empirically assess DICIDer, and investigate the use of DICIs in

the real-world.

Research questions: The study is driven by the following research
questions (RQs).

• RQ1: Can DICIDer spot DICIs in real-world Android apps?
To answer this RQ, we investigate on the one hand the re-

currence of DICIs in apps collected from various markets.

On the other hand, we study the prevalence of DICIs among

goodware and malware apps respectively.

• RQ2: How DICI usages evolve over time? To answer this RQ,

we consider both the evolution of number of apps leverag-

ing DICIs within markets, as well as the evolution of DICIs

usages within app lineages (i.e., based on their updates).

• RQ3: For what purposes do developers implement DICIs?We

consider a number of real-world examples to dissect the

purposes of DICI usages.

Dataset: The evaluation is conducted on apps collected from An-

droZoo [20], a continuously growing repository of Android apps.

At the time of writing, the dataset size was over 10 million apks

crawled from the Google Play official store as well as from alterna-

tive markets and repositories. Some metadata on the apps are also

collected via the toolkits provided by Li et al. [34].

Implementation: DICIDer is built based on the Soot Framework

and leverages FlowDroid taint analysis implementation. DICIDer

provides reasonable performance on a commodity computer (2.9

GHz quad core Intel Core i7 CPU with 16GB memory): the average

time consumption for analysing a single apk is about 62.72 seconds.

4.1 RQ1: DICIs in Real-World Apps
The goal is to run DICIDer in order to attempt the detection of

DICIs in real-world Android apps. To that end, we sample Android

apps following their market provenance.

Comparison among Markets. Currently, the top-4 sources

ranked based on the number of apps crawled in AndroZoo are

Google Play, PlayDrone, Anzhi and AppChina. However, since Play-

Drone is a specific subset of apps originally crawled from Google

Play, we do not consider PlayDrone as a distinct provenance. Thus,

we consider mainly the remaining 3 sources and randomly select

25,000 apps from each provenance
5
leading to a total of 75,000

Android apps.

Table 2 provides statistics of the execution of DICIDer on the

75k real-world apps. Overall, DICIDer is able to detect a signif-

icant number of DICIs. At the market level, we notice that apps

from the official market, Google Play, are much more likely to con-

tain DICIs than apps from the alternative markets. A priori, this is

5
Since DICIDer may fail to analyze some apps due to unexpected corner cases such as

the given APK does not contain DEX file, in practice, we have randomly listed all apps

and sequentially tested them until the quota of 25000 is reached for each provenance.

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Jun Gao, Li Li, Pingfan Kong, Tegawendé F. Bissyandé, and Jacques Klein

Table 2: DICI Comparison among Markets

Google Anzhi AppChina Total
of successfully analyzed apps 25,000 25,000 25,000 75 000

of apps with DICIs 4,344 100 135 4579

Percentage of apps with DICIs 17.38% 0.40% 0.54% 6.11%

of detected DICIs 4,396 1,051 227 5674

Median # of DICIs per App6 1 13 1 1

reassuring since alternate markets are known to include more ma-

licious samples than the official markets [35]. Nevertheless, when

looking at the median number of DICIs per app, apps from mar-

ket Anzhi exhibit a remarkably higher number of DICIs than for

other markets when considering apps that implement this reuse

mechanism. Figure 5 gives a more concrete understanding of the

difference between Anzhi and the other markets from the perspec-

tive of DICI per app. Further statistical investigations of Google
Play cases reveal that about 97% of DICIs are from a class named

com.google.android.gms.dynamite.DynamiteModule.
Google Mobile Services and DICIs.We focus on the Dynamite-
Module class that is recurrently involved with DICIs of GooglePlay

apps. Based on its package name, we suspect that it is may be

part of the official Google Mobile Service (GMS) APIs. The official

documentation does not however mention such a package. We pos-

tulate that such a package may have been intentionally omitted

from the documentation to avoid uses by third-party developers.

Nevertheless, we undertake to confirm the presence of this class

within GMS by explicitly requesting Gradle dependency manage-

ment to find the GMS libraries and included them in a toy/demo

app. Afterwards, we manually analyzed the content of the class to

further check what it does through DICI. According to the analy-

sis report of DICIDer, DynamiteModule code instantiates a class
named com.google.android.gms.dynamite.IDynamiteLoader from the

app named com.google.android.gms. To further check how this in-

stance is used, we proceed to reverse-engineer an app that contains

GMS APIs the code of such APIs are not open-sourced. According

to the decompiled code, this class implements the interface an-
droid.os.IBinder which is designed for in- and cross- process calls

7

and is used to query a local interface here. Although this class is

also under the package of GMS dynamite according to its name.

It cannot be found in the GMS libraries. Since there is quite little

information about these libraries. We can only infer that the app

com.google.android.gms is the GMS framework which is supposed

to be embedded into the Android OS, and direct inter-app code

invocation is the way to access the framework.

We also consider class org.xwalk.core. XWalkCoreWrapper which
contributes to most DICIs in Anzhi dataset. Class XWalkCoreWrap-
per is from a project called CrossWalk which was once founded by

Intel’s Open Source Technology Center8. It is a web app runtime to

provide manipulability to browser. The class uses DICIs to access

functionalities of its own app.

While we studied the recurrent cases in this RQs, wewill consider

the remaining 3% in Google Play datasets for answering RQ3.

Comparison between Benign Apps and Malware. Andro-
Zoo not only crawls Android apps, but also the antivirus reports

7
According to official document at https://developer.android.com/reference/android/

os/IBinder

8
See project page at https://crosswalk-project.org/

0 10 20 30 40 50 60 70

google

anzhi

appchina

Figure 5: Distribution of DICI per App

from VirusTotal [36] for each app. For a given app, AndroZoo in-

dicates the number of anti-virus products which flag the app as a

malware (among a total of about 60 anti-virus products). We rely

on this information to build our dataset of goodware and malware.

For goodware, we consider 25,000 apps selected from AndroZoo

with no flag from any anti-virus product. For malware, we consider

25,000 apps selected from AndroZoo with at least 30 flags (i.e., at

least half of the anti-virus have a consensus on app maliciousness).

Table 3 presents the comparison between Goodware and Mal-

ware. Surprisingly, overall, malware actually use much less DICIs

compared to benign apps. However, by further checking the source

package of DICIs, we find that for benign apps, the dominated

class is again com.google.android.gms.dynamite.DynamiteModule
While, for malware, this class only contributes a quarter of DICI

usages. This has two implications: the scope of using DICI for be-

nign scenarios is still limited, although many instances of benign

apps, because of their reliance on GMS, are actually hosting code

that use the DICI mechanism; malicious apps on the other hand

may have indeed been leveraging DICIs.

Table 3: DICI Comparison between Goodware and Malware

Benign Malware
of successfully analyzed apps 25,000 25,000

of apps with DICIs 5,836 52

Percentage of apps with DICIs 23.34% 0.2%

of detected DICIs 5,964 101

Median # of DICIs per App9 1 1

Answer to RQ1: DICIDer is able to detect DICIs in real-word apps.

This reuse mechanism is actually seen in many apps, although mostly

due to the use of the GMS librarieswhere class com.google.android.gms.-
dynamite.DynamiteModule heavily relies on DICI. There are however

cases of malware leveraging DICI outside the scope of GMS libraries.

4.2 RQ2: Evolution of DICI Usages
As shown in RQ1, com.google.android.gms.dynamite.DynamiteModule
is the major source of DICIs. We noticed that this class was not

present in the Android ecosystem since the beginning of Android.

Thus, we propose to study the evolution in time of the number of

DICIs within Android apps. To perform this experiment, we con-

sider app lineages (i.e., different versions of apps over time). To

that end, we consider a large lineage dataset proposed by Gao et

al. [37] based on the AndroZoo repository. Most of the lineages are

spread over several years, but for each year, we consider only the

latest apk version in that year for a given lineage. The statistics of

apks per year from the lineage dataset in the literature is listed in

Table 4.

https://developer.android.com/reference/android/os/IBinder
https://developer.android.com/reference/android/os/IBinder
https://crosswalk-project.org/

Borrowing Your Enemy’s Arrows ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Table 4: # APKs considered from the Lineage dataset [37]

2011 2012 2013 2014 2015 2016 2017 2018
3,950 6,252 13,191 23924 17,505 30,690 6,995 3,583

We run DICIDer on this dataset and compute the percentage

of apks containing DICIs for each year. The result is presented in

Figure 6. A clear increasing trend can be observed after year 2015.

By further investigating the DICI contributors, we notice that the

main reason is still the GMS libraries. We find that before 2016,

there are no contributors from GMS libraries. However, starting

from 2016, the main contributors are all from GMS libraries, al-

though the source packages shift from internal (mainly in 2016) to

dynamite (after 2016). Unfortunately, these library not being part of
the Android Open Source Project, we cannot find any information

about the APIs publication and update time. We infer however that,

starting from 2016, GMS libraries start to be more and more used

Android applications.

2011 2012 2013 2014 2015 2016 2017 2018
Year

0.0%

2.0%

4.0%

6.0%

8.0%

Figure 6: Percentage of APKs Contain DICI

By leveraging lineage, we also have the chance to investigate

"update" patterns through checking the status of DICI usages in

different versions of a same app. For this experiment, we consider

all lineages with at least one DICI present in at least one apk of

the lineage, and lineage with at least 4 apks. Table 5 presents the

distribution of different update patterns. In a large majority of the

cases, DICIs are not implemented in the initial version of the app.

Instead it is added during an update.

Table 5: # APKs of Each Year

% of lineages in which a DICI has been introduced by an update 89.38%

% of lineages in which a DICI has been removed after an update 8.30%

% of lineages in which a DICI has been in all versions 2.07%

% of lineages with DICI added, then removed, and then added 0.26%

Answer to RQ2: Over time, the use of the DICI mechanism has

progressively become boomed among Android apps, mainly due to

the availability of the GMS library. Nevertheless, it is noteworthy

that DICIs can be implemented during app updates, which may cause

concerns for update attacks, since it is well-known that users are less

wary of apps during updates [38, 39].

4.3 RQ3: Purposes of Using DICIs
Tables 6 and 7 enumerate respectively the top 10 DICI contributor

packages where DICIs are invoked and the top 9 apps that are

targeted by DICI reuse cases. These statistics are based on the

lineage dataset described above. We note that, besides the fact that

a GMS package is a top contributor for DICI usage, the GMS app is

also the top app whose code is largely targeted for direct inter-app

invocation. From the package and app names, we can notice the

connection between some of them such as package com.jb.gosms.util
tries to access code in app com.jb.gosms.emoji. Actually, by manually

checking all the top 10 contributors, we confirm that they all try to

access apps with similar names. For these cases, we can infer that

they try to access the code from the app owned by same developers,

to perform app collusion scenarios.

Table 6: Top DICI Contributor Packages

Rank Package Number
1 com.google.android.gms 7,462

2 com.lbe.doubleagent.client 128

3 com.jb.gosms.util 37

4 net.pierrox.lightning_launcher.b 30

5 com.dokdoapps.utility.GoogleServiceManager 20

5 com.handcent.common.v 20

7 kl.ime.oh.H 14

8 com.google.android.apps 13

9 org.xwalk.core.ReflectionHelper 12

10 cn.longmaster.common.pluginfx 10

Table 7: Top DICI Invoked Apps

Rank Package Number
1 com.google.android.gms 7,469

2 com.jb.gosms.emoji 37

3 klye.hanwriting 14

4 org.xwalk.core 12

5 net.pierrox.lightning_locker_p 2

5 com.pansi.msg.plugin.custom_notify 2

6 com.pansi.msg.plugin.regins 1

6 com.shocktech.guaguahappy 1

6 com.pansi.msg.plugin.emoji 1

We take one more step to reveal the purpose of apps using DICIs

by deeply exploring some apps.

Plugin implementation through DICI. The app with package

name kl.ime.oh10 is a multi-language keyboard app developed by

Honsowithmore than 1million installs onGoogle Play. It is found us-
ing 5methods from another appwith package name klye.hanwriting,
which is a Chinese keyboard plugin app also can be found on Google
Playwith the same developer

11
. By searching apps from the same de-

veloper, more plugins for other languages can be found as well. We

further notice that when the code loading failed, the app will return

a string to ask to “Download Chinese plugin”. Thus, we can infer

that this app implemented a plugin functionality by using the DICI

code reuse mechanism. We found several apps performing similar

plugin behaviour. App named com.jb.gosms is found with loading

13 methods from an app with package name com.jb.gosms.emoji
and a BroadcastReceiver is registered to check if the app is newly in-

stalled or uninstalled. App com.pansi.msg loads code from 3 different

apps which are com.pansi.msg.plugin.custom_notify, com.pansi.msg.
plugin.emoji and com.pansi.msg.plugin.regins. And app net.pierrox.
lightning_launcher loaded code from net.pierrox.lightning_locker_p.
We further notice that for the value of flags when creating the app

context, some of them used value 1 instead of 3 which omits the flag

10
It can be downloaded from AndroZoo by using the SHA256: 04E37D1CE54C7E326A7

714F56B35F922DF9EAF5AAD190FC5FD61716F84176D3E and the app can be found on

Google Play with link: https://play.google.com/store/apps/details?id=kl.ime.oh

11
The page link is: https://play.google.com/store/apps/details?id=klye.hanwriting

com.pansi.msg.plugin.emoji
com.pansi.msg.plugin.emoji
net.pierrox.lightning_launcher
net.pierrox.lightning_launcher
https://play.google.com/store/apps/details?id=kl.ime.oh
https://play.google.com/store/apps/details?id=klye.hanwriting

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Jun Gao, Li Li, Pingfan Kong, Tegawendé F. Bissyandé, and Jacques Klein

of CONTEXT_IGNORE_SECURITY. This could be because all these

apps are from the same developer (i.e., containing same signatures).

Nevertheless, it is an interesting feature to be considered by static

analyzers when assessing the security risks.

Keeping up with best practices through GMS.We find another

use of the DICI code reuse mechanism which is to load up-to-date

functionalities matching the best practices of Android programming

available via com.google.android.gms. GMS stands for Google Mobile
Services and com.google.android.gms is the Google Play Services Pack-
ages. The loader apps try to invoke the method insertProvider from
class com.google.android.gms.common.security.ProviderInstallerImpl.
According to the official documentation from Google12, the purpose
is to update the security provider to protect against SSL exploits.

However, the relevant method mentioned in the document is in-
stallIfNeeded which is different from the one we found. By further

checking the source code of method installIfNeeded, we find that

the fundamental method is also insertProvider. Some developers

may also notice this. Thus, instead of invoking the documented

method and include all relevant libraries, they chose to directly

invoke the fundamental method. All these loader apps are with

package name of com.monese.monese.live, nya.miku.wishmaster and
com.levelup.touiteur respectively13.

5 COUNTERMEASURES
We now discuss possible countermeasures that could be leveraged

by app developers to protect their app code from being reused in a

stealthy way through DICI.

1 public class AntiTheftApp extends Application {
2 private static AntiTheftApp theInstance;
3 @Override
4 public void onCreate () {
5 super.onCreate (); theInstance = this;
6 }
7 public static AntiTheftApp getInstance () {
8 return theInstance; }
9 public void verify () { }

Listing 5: Implementation of Application Instance based
Verification

We found a straightforward countermeasure that, until now, we

could not find a way to break. The idea is to check, with the code

to protect, what is the "instance" of the application that is execut-

ing it. Indeed, to the best of our knowledge, there is no means

to get or generate an instance of another app. Listing 5 presents

the code that a developer could use to protect her app. First, to

record the app’s instance, a slight modification to the Application

class is required (here AntiTheftApp). Specifically, we create a

private instance field (line 2) and assign the current instance to

this field (line 7). Then, we create an empty method called ver-
ify (lines 14 to 15). The purpose of this method is to check the

availability of the stored application instance (i.e., theInstance at
line 2), and an empty method is already enough. Indeed, when

getInstance().verify() is called in the original app, nothing

happens. However, when this method is called in the plagiarist app,

the app will crash because theInstance has not been initialized,

12
https://developer.android.com/training/articles/security-gms-provider

13
The SHA256s are: E953776572E4E84CB64D0ABF442211FC9A5EDDF0BDEF7E5DFC47

C94756C714AB, 8B16DBD2D4951BDAB16F2AA9AABCBC8BEE91264DAB78F2BCAFD3EE31
7B84E27C, 06E280B615D5CF68E6BD3F89E27FF11FDBCFCE7D038AACCFE87C486F4715
9EB6

and yet it cannot be instantiated or overwritten by attacking code

in other apps. Finally, to protect from being reused (via DICI), app de-

veloper can simplywrite AntiTheftApp.getInstance().verify()
at the beginning of each method, she wants to protect.

Other Possibilities: So far, we have only attempted to protect

DICIs at the app code level. Yet we believe many other features

could also be leveraged to protect DICIs. Indeed, on the one hand,

native libraries (or Javascript code for WebKit-based apps) could be

leveraged, as they increase significantly the complexity of the code,

making it non-trivial to be bypassed by attackers. On the other hand,

some system features could be leveraged as well. For example, each

Android app will be allocated with a private directory that cannot

be accessed by other apps, and thereby could be leveraged to check

the identity of the active app. Last but not least, from the Android

framework point of view, there are various countermeasures could

be applied. For example, Android OS could provide a mechanism

similar to permission and component management for the inter-

app code invocation functionality. It could limit the code access

within apps from the same developers, or allow a declaration in the

AndroidManifest file to specify which part of the code (i.e., classes)

can be accessed publicly by other apps through DICIs. It also can

be limited based on the privileges of Linux users.

6 LIMITATIONS
The fact that our prototype tool has revealed various DICI usages

in real-world Android apps shows that our tool is useful to pin-

point them. Nonetheless, the implementation of our tool has come

with various limitations. First of all, since the dummy main method

construction approach is borrowed from FlowDroid, all the rele-

vant limitations reported by FlowDroid also apply to our approach.

For example, unsoundness can arise if certain callbacks in An-

droid lifecycles are overlooked when building the dummy main

method. Second, DICIDer directly adopts the constant propaga-

tion approach provided by Soot which unfortunately only supports

intra-procedural analysis. As a result, although it is not our main

focus of this work, certain reflectively accessed methods or fields

could be missed by our approach. We keep this for future work. At

the moment, DICIDer does not take into account native libraries

and is oblivious to multiple-threading implementations, which may

result in unsound results as well.

Not only the implementation of our prototype tool comes with

limitations, the validity of our experimental results may also be

threatened by the experimental setup we designed in this work. The

major threat to the validity lies in the choice of selected Android

apps. Although we rely on a random selection from AndroZoo to

prepare the real-world apps for analysis, since the distributions of

apps in different markets available in AndroZoo vary significantly,

we cannot guarantee the representativeness of these apps. Further-

more, we leverage the app assembly time to build app lineages in

this work. The app assembly time, as experimentally revealed by Li

et al. [40], may not be accurate to represent the app release time.

Hence, the app lineages we leverage to study the evolution of DICI

usages may not be reliable as well. In this work, we try to mitigate

this by following the same approach of our fellow researchers to

build the app lineages, which have been demonstrated to be useful

to support app evolution studies.

https://developer.android.com/training/articles/security-gms-provider

Borrowing Your Enemy’s Arrows ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

7 RELATEDWORK
To the best of our knowledge, this paper presents the first work

disclosing the possibility of direct inter-app code invocation among

Android apps and subsequently detecting DICI usages in Android

apps. As a result, there is no related work specifically focusing on

this problem. However, the research community has proposed vari-

ous contributions in the domain of static analysis of Android apps.

Moreover, someworks focused on the problems of Inter-Component

Communication (ICC) and Inter-App Communication (IAC), which

are closely related to DICI. We now discuss the representative ones.

StaticAnalysis ofAndroidApps:Many state-of-the-art works

have adopted static analysis, as one of their fundamental parts, to

perform their research investigations. As presented in a recent

survey done by Li et al. [41], there are over 100 papers, published

mainly in the software engineering and security community, pro-

posed to analyze Android apps statically. As revealed in their survey,

static analysis has been largely conducted to uncover security and

privacy issues such as privacy leaks detection [13, 28, 42], adver-

tisement violations [43–45], and malware detection [46–48]. Also,

the survey discloses that the well-known Soot framework is the

most adopted basic support tool in the community to implement

static analysis approaches. We remind that the Soot framework

is also leveraged by DICIDer to detect the usage of DICIs. Static

analysis has also been used by researchers to scan for (1) app defects

including energy issues [49, 50], (2) fix runtime crashes [51, 52], (3)

improve the realization of dynamic testing appraoches [53–56].

Focus on Inter-Component Communication: Android apps
differ from traditional Java apps in that there is no single entry

point, e.g., the main method, in the apps. Apps are composed of

multiple basic components. To pass on data among these compo-

nents, Android has a special Inter-component Communication (ICC)

mechanism. However, malware may also use this mechanism to

achieve their malicious behaviors, e.g., steal users’ private data. To

this end, our community has proposed various approaches to miti-

gate the attacks related to Android ICCs. As an example, Epicc [12]

is proposed to reduce the ICC problem to an instance of the In-

terprocedural Distributive Environment (IDE) problem, and finds

ICC vulnerabilities with far fewer false positives. IccTA [13] is a

static taint analyzer to detect privacy leaks among components in

Android applications. It goes beyond existing ICC leaks detection

tools like [14–16].

Focus on Inter-Application Communication: Android’s Inter-
application communication (IAC) mechanism allows for reuse of

functionality across apps via Intents. Contrary to the technique

described in this paper, IAC is intended for functionality sharing.

However, this mechanism also raises concerns for vulnerabilities

crossing Android apps. Thereby, the research community has also

proposed various approaches to mitigate possible vulnerabilities

brought by IAC. For example, Li et al. [23] have proposed a tool

called ApkCombiner aiming to combine multiple apps together

to a single app, so as to reduce an IAC problem to an ICC prob-

lem. As a result, this tool allows all the aforementioned ICC-aware

approaches to resolving IAC problems without modifications. Per-

missionFlow [57] can reliably and accurately detect vulnerable

information flows among Android applications. IntentDroid is a

cloud-based testing algorithm for Android apps for automated dis-

covery of Android IAC vulnerabilities. ComDroid [58] is another

tool to detect ICC related malicious behaviors in Android apps, e.g.,

sniffing message contents and injecting forged messages.

Unfortunately, since DICI leverages a totally different channel

to implement inter-app communication, all the aforementioned

existing works cannot be directly applied to detect DICI usages

in Android apps. Our prototype tool DICIDer fills this gap by

providing a means to statically pinpoint DICI usages in Android

apps, which could be considered as a complement to the state-of-

the-art.

8 CONCLUSION
In this paper, we disclose to the software engineering community a

novel mechanism allowing direct inter-app code invocation (DICI)

among installed Android apps on mobile devices. Through concrete

motivating examples, we demonstrate that DICI can be leveraged

to successfully perform malicious attacks and plagiarize the core

function of the competitor’s apps. We then introduce to the com-

munity a static analyzer called DICIDer to automatically locate

the usage of DICIs in Android apps. Experiments on a large set of

Android apps reveal that DICIDer is indeed capable of detecting

DICIs in Android apps, and the usage of DICIs tends to increase

over time, which may cause concerns for update attacks since users

might be less wary of apps during updates.

ACKNOWLEDGMENT
This work is supported by the Fonds National de la Recherche (FNR),

Luxembourg, under both projects PRIDE15/10621687/SPsquared

and CHARACTERIZE C17/IS/11693861, as well as by the European

Union, under the Horizon 2020 SPARTA project (grant agreement

No 830892). This work is also supported by the Australian Research

Council (ARC) under projects DE200100016 and DP200100020.

We thank Dr. Daoyuan Li for providing technical support in de-

veloping the TikTokDownloader use case and Dr. Alexandre Bartel
for his guidance in using Soot and FlowDroid.

REFERENCES
[1] William B Frakes and Kyo Kang. Software reuse research: Status and future. IEEE

transactions on Software Engineering, 31(7):529–536, 2005.
[2] Israel J Mojica Ruiz, Meiyappan Nagappan, Bram Adams, and Ahmed E Hassan.

Understanding reuse in the android market. In 2012 20th IEEE International
Conference on Program Comprehension (ICPC), pages 113–122. IEEE, 2012.

[3] Li Li, Tegawendé F Bissyandé, and Jacques Klein. Rebooting research on detecting

repackaged android apps: Literature review and benchmark. IEEE Transactions
on Software Engineering, 2019.

[4] Li Li, Daoyuan Li, Tegawendé F Bissyandé, Jacques Klein, Yves Le Traon, David Lo,

and Lorenzo Cavallaro. Understanding android app piggybacking: A systematic

study of malicious code grafting. IEEE Transactions on Information Forensics and
Security, 12(6):1269–1284, 2017.

[5] Li Li, Tegawendé F Bissyandé, and Jacques Klein. Simidroid: Identifying and

explaining similarities in android apps. In The 16th IEEE International Conference
On Trust, Security And Privacy In Computing And Communications (TrustCom
2017), 2017.

[6] Jin-Hyuk Jung, Ju Young Kim, Hyeong-Chan Lee, and Jeong Hyun Yi. Repackag-

ing attack on android banking applications and its countermeasures. Wireless
Personal Communications, 73(4):1421–1437, 2013.

[7] Wu Zhou, Xinwen Zhang, and Xuxian Jiang. Appink: watermarking android apps

for repackaging deterrence. In Proceedings of the 8th ACM SIGSAC symposium on
Information, computer and communications security, pages 1–12, 2013.

[8] Mu Zhang and Heng Yin. Appsealer: Automatic generation of vulnerability-

specific patches for preventing component hijacking attacks in android applica-

tions. In NDSS, 2014.

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Jun Gao, Li Li, Pingfan Kong, Tegawendé F. Bissyandé, and Jacques Klein

[9] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. Chex: statically

vetting android apps for component hijacking vulnerabilities. In Proceedings
of the 2012 ACM conference on Computer and communications security, pages
229–240, 2012.

[10] Damien Octeau, Somesh Jha, Matthew Dering, Patrick Mcdaniel, Alexandre

Bartel, Li Li, Jacques Klein, and Yves Le Traon. Combining static analysis with

probabilistic models to enable market-scale android inter-component analysis.

In Proceedings of the 43th Symposium on Principles of Programming Languages
(POPL 2016), 2016.

[11] Damien Octeau, Patrick McDaniel, Somesh Jha, Alexandre Bartel, Eric Bodden,

Jacques Klein, and Yves Le Traon. Effective inter-component communication

mapping in android: An essential step towards holistic security analysis. In

Presented as part of the 22nd USENIX Security Symposium (USENIX Security 13),
pages 543–558, Washington, D.C., 2013. USENIX.

[12] Damien Octeau, Patrick McDaniel, Somesh Jha, Alexandre Bartel, Eric Bodden,

Jacques Klein, and Yves Le Traon. Effective inter-component communication

mapping in android: An essential step towards holistic security analysis. In

Presented as part of the 22nd {USENIX} Security Symposium ({USENIX} Security
13), pages 543–558, 2013.

[13] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt, S. Rasthofer, E. Bodden,

D. Octeau, and P. McDaniel. Iccta: Detecting inter-component privacy leaks in

android apps. In 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, volume 1, pages 280–291, May 2015.

[14] Jonathan Burket, Lori Flynn, William Klieber, Jonathan Lim, Wei Shen, and

William Snavely. Making didfail succeed: Enhancing the cert static taint analyzer

for android app sets. Technical report, CARNEGIE-MELLONUNIV PITTSBURGH

PA PITTSBURGH United States, 2015.

[15] Adam P Fuchs, Avik Chaudhuri, and Jeffrey S Foster. Scandroid: Automated

security certification of android. Technical report, 2009.

[16] Lei Wu, Michael Grace, Yajin Zhou, Chiachih Wu, and Xuxian Jiang. The impact

of vendor customizations on android security. In Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security, pages 623–634, 2013.

[17] Adrienne Porter Felt, Helen J Wang, Alexander Moshchuk, Steve Hanna, and

Erika Chin. Permission re-delegation: Attacks and defenses. In USENIX Security
Symposium, volume 30, page 88, 2011.

[18] Tristan Ravitch, E Rogan Creswick, Aaron Tomb, Adam Foltzer, Trevor Elliott,

and Ledah Casburn. Multi-app security analysis with fuse: Statically detecting

android app collusion. In Proceedings of the 4th Program Protection and Reverse
Engineering Workshop, pages 1–10, 2014.

[19] Amiangshu Bosu, Fang Liu, Danfeng Yao, and GangWang. Collusive data leak and

more: Large-scale threat analysis of inter-app communications. In Proceedings
of the 2017 ACM on Asia Conference on Computer and Communications Security,
pages 71–85, 2017.

[20] Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le Traon. Androzoo:

Collecting millions of android apps for the research community. In Proceedings of
the 13th International Conference on Mining Software Repositories, MSR ’16, pages

468–471, New York, NY, USA, 2016. ACM.

[21] Karim O Elish, Haipeng Cai, Daniel Barton, Danfeng Yao, and Barbara G Ryder.

Identifying mobile inter-app communication risks. IEEE Transactions on Mobile
Computing, 19(1):90–102, 2018.

[22] Shweta Bhandari, Wafa Ben Jaballah, Vineeta Jain, Vijay Laxmi, Akka Zemmari,

Manoj Singh Gaur, Mohamed Mosbah, and Mauro Conti. Android inter-app

communication threats and detection techniques. Computers & Security, 70:392–
421, 2017.

[23] Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon.

Apkcombiner: Combining multiple android apps to support inter-app analysis.

In IFIP International Information Security and Privacy Conference, pages 513–527.
Springer, 2015.

[24] TikTok. Web site: https://www.tiktok.com.

[25] Jinyung Kim, Yongho Yoon, Kwangkeun Yi, Junbum Shin, and SWRD Center.

Scandal: Static analyzer for detecting privacy leaks in android applications. MoST,
12(110):1, 2012.

[26] Christopher Mann and Artem Starostin. A framework for static detection of

privacy leaks in android applications. In Proceedings of the 27th annual ACM
symposium on applied computing, pages 1457–1462, 2012.

[27] Siddharth Prakash Rao, Silke Holtmanns, Ian Oliver, and Tuomas Aura. Un-

blocking stolen mobile devices using ss7-map vulnerabilities: Exploiting the

relationship between imei and imsi for eir access. In 2015 IEEE Trustcom/Big-
DataSE/ISPA, volume 1, pages 1171–1176. IEEE, 2015.

[28] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,

Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. Flowdroid:

Precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for

android apps. SIGPLAN Not., 49(6):259–269, June 2014.
[29] Siegfried Rasthofer, Steven Arzt, and Eric Bodden. A machine-learning approach

for classifying and categorizing android sources and sinks. In NDSS, volume 14,

page 1125. Citeseer, 2014.

[30] Li Li, Tegawendé F. Bissyandé, Damien Octeau, and Jacques Klein. Droidra: Tam-

ing reflection to support whole-program analysis of android apps. In Proceedings

of the 25th International Symposium on Software Testing and Analysis, ISSTA 2016,

page 318–329, New York, NY, USA, 2016. Association for Computing Machinery.

[31] P. Calciati and A. Gorla. How do apps evolve in their permission requests? a

preliminary study. In 2017 IEEE/ACM 14th International Conference on Mining
Software Repositories (MSR), pages 37–41, May 2017.

[32] Xuetao Wei, Lorenzo Gomez, Iulian Neamtiu, and Michalis Faloutsos. Permission

evolution in the android ecosystem. In Proceedings of the 28th Annual Computer
Security Applications Conference, ACSAC ’12, pages 31–40, New York, NY, USA,

2012. Association for Computing Machinery.

[33] Patrick Lam, Eric Bodden, Ondrej Lhoták, and Laurie Hendren. The soot frame-

work for java program analysis: a retrospective. In Cetus Users and Compiler
Infastructure Workshop (CETUS 2011), volume 15, page 35, 2011.

[34] Li Li, Jun Gao, Médéric Hurier, Pingfan Kong, Tegawendé F. Bissyandé, Alexandre

Bartel, Jacques Klein, and Yves Le Traon. Androzoo++: Collecting millions of

android apps and their metadata for the research community, 2017.

[35] Haoyu Wang, Zhe Liu, Jingyue Liang, Narseo Vallina-Rodriguez, Yao Guo, Li Li,

Juan Tapiador, Jingcun Cao, and Guoai Xu. Beyond google play: A large-scale

comparative study of chinese android app markets. In The 2018 Internet Measure-
ment Conference (IMC 2018), 2018.

[36] VirusTotal. Web site: https://www.virustotal.com/.

[37] J. Gao, L. Li, P. Kong, T. F. Bissyandé, and J. Klein. Understanding the evolution

of android app vulnerabilities. IEEE Transactions on Reliability, pages 1–19, 2019.
[38] Francesco Mercaldo, Vittoria Nardone, Antonella Santone, and Corrado Aaron

Visaggio. Download malware? no, thanks: how formal methods can block update

attacks. In Proceedings of the 4th FME Workshop on Formal Methods in Software
Engineering, pages 22–28, 2016.

[39] David Barrera, Jeremy Clark, Daniel McCarney, and Paul C Van Oorschot. Under-

standing and improving app installation security mechanisms through empirical

analysis of android. In Proceedings of the second ACM workshop on Security and
privacy in smartphones and mobile devices, pages 81–92, 2012.

[40] Li Li, Tegawendé F Bissyandé, and Jacques Klein. Moonlightbox: Mining an-

droid api histories for uncovering release-time inconsistencies. In The 29th IEEE
International Symposium on Software Reliability Engineering (ISSRE 2018), 2018.

[41] Li Li, Tegawendé F Bissyandé, Mike Papadakis, Siegfried Rasthofer, Alexandre

Bartel, Damien Octeau, Jacques Klein, and Yves Le Traon. Static analysis of

android apps: A systematic literature review. Information and Software Technology,
2017.

[42] Li Li, Tegawendé F Bissyandé, Damien Octeau, and Jacques Klein. Droidra:

Taming reflection to support whole-program analysis of android apps. In The
2016 International Symposium on Software Testing and Analysis (ISSTA 2016), 2016.

[43] Tianming Liu, Haoyu Wang, Li Li, Xiapu Luo, Feng Dong, Yao Guo, Liu Wang,

Tegawendé F Bissyandé, and Jacques Klein. Maddroid: Characterising and de-

tecting devious ad content for android apps. In The Web Conference 2020 (WWW
2020), 2020.

[44] Feng Dong, Haoyu Wang, Li Li, Yao Guo, Tegawendé F Bissyandé, Tianming

Liu, Guoai Xu, and Jacques Klein. Frauddroid: Automated ad fraud detection for

android apps. In The 26th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE 2018), 2018.

[45] Feng Dong, Haoyu Wang, Li Li, Yao Guo, Guoai Xu, and Shaodong Zhang. How

do mobile apps violate the behavioral policy of advertisement libraries? In The
19th Workshop on Mobile Computing Systems and Applications (HotMobile 2018),
2018.

[46] Li Li, Kevin Allix, Daoyuan Li, Alexandre Bartel, Tegawendé F Bissyandé, and

Jacques Klein. Potential Component Leaks in Android Apps: An Investigation

into a new Feature Set for Malware Detection. In The 2015 IEEE International
Conference on Software Quality, Reliability & Security (QRS), 2015.

[47] Michael Grace, Yajin Zhou, Qiang Zhang, Shihong Zou, and Xuxian Jiang.

Riskranker: scalable and accurate zero-day android malware detection. In Pro-
ceedings of the 10th international conference on Mobile systems, applications, and
services, pages 281–294, 2012.

[48] Dong-Jie Wu, Ching-Hao Mao, Te-En Wei, Hahn-Ming Lee, and Kuo-Ping Wu.

Droidmat: Android malware detection through manifest and api calls tracing. In

2012 Seventh Asia Joint Conference on Information Security, pages 62–69. IEEE,
2012.

[49] Haowei Wu, Shengqian Yang, and Atanas Rountev. Static detection of energy

defect patterns in android applications. In Proceedings of the 25th International
Conference on Compiler Construction, pages 185–195, 2016.

[50] Luis Cruz, Rui Abreu, John Grundy, Li Li, and Xin Xia. Do energy-oriented

changes hinder maintainability? In The 35th IEEE International Conference on
Software Maintenance and Evolution (ICSME 2019), 2019.

[51] Pingfan Kong, Li Li, Jun Gao, Tegawendé F Bissyandé, and Jacques Klein. Mining

android crash fixes in the absence of issue-and change-tracking systems. In

Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing
and Analysis, pages 78–89, 2019.

[52] Shin Hwei Tan, Zhen Dong, Xiang Gao, and Abhik Roychoudhury. Repairing

crashes in android apps. In 2018 IEEE/ACM 40th International Conference on
Software Engineering (ICSE), pages 187–198. IEEE, 2018.

Borrowing Your Enemy’s Arrows ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

[53] Pingfan Kong, Li Li, Jun Gao, Kui Liu, Tegawendé F Bissyandé, and Jacques

Klein. Automated testing of android apps: A systematic literature review. IEEE
Transactions on Reliability, 68(1):45–66, 2018.

[54] Ke Mao, Mark Harman, and Yue Jia. Sapienz: Multi-objective automated testing

for android applications. In Proceedings of the 25th International Symposium on
Software Testing and Analysis, pages 94–105, 2016.

[55] Hailong Zhang, Haowei Wu, and Atanas Rountev. Automated test generation for

detection of leaks in android applications. In Proceedings of the 11th International
Workshop on Automation of Software Test, pages 64–70, 2016.

[56] Ting Su, Guozhu Meng, Yuting Chen, Ke Wu, Weiming Yang, Yao Yao, Geguang

Pu, Yang Liu, and Zhendong Su. Guided, stochastic model-based gui testing of

android apps. In Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering, pages 245–256, 2017.

[57] Dragos Sbîrlea, Michael G Burke, Salvatore Guarnieri, Marco Pistoia, and Vivek

Sarkar. Automatic detection of inter-application permission leaks in android

applications. IBM Journal of Research and Development, 57(6):10–1, 2013.
[58] Roee Hay, Omer Tripp, andMarco Pistoia. Dynamic detection of inter-application

communication vulnerabilities in android. In Proceedings of the 2015 International
Symposium on Software Testing and Analysis, pages 118–128, 2015.

	Abstract
	1 Introduction
	2 Dissection of the DICI Mechanism
	2.1 Direct Inter-App Code Invocation in Android
	2.2 DICI in Action

	3 Tool Design
	3.1 Step (1): Call-Graph Construction
	3.2 Step (2): API Scan
	3.3 Step (3): Context-Aware Flow-Sensitive Data-Flow Analysis
	3.4 Step (4): DICI Usage Identification

	4 Evaluation
	4.1 RQ1: DICIs in Real-World Apps
	4.2 RQ2: Evolution of DICI Usages
	4.3 RQ3: Purposes of Using DICIs

	5 Countermeasures
	6 Limitations
	7 Related Work
	8 Conclusion
	References

